

Adaptive and provably accurate estimation of quantum expectation values using the empirical Bernstein stopping rule

Uğur Tepe, Alexander Gresch, Martin Kliesch ugur.tepe@hhu.de

MOTIVATION

Goal

• Reduce measurement effort of quantum measurements while retaining a target accuracy

Applications

- Variational quantum algorithms (VQAs), e.g. for quantum chemistry, combinatorics
- any quantum experiment of increasing system size

Challenges

- Many non-commuting observables
- Unclear hyperparameter optimization
- High precision required:

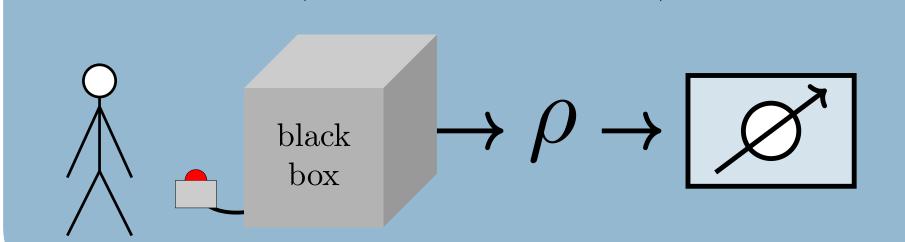
Use-case: Quantum Chemistry

Chemical accuracy (1.6 mHa) required

Fermionic operators:
$$H = \sum_{ij} h_{ij} a_i^{\dagger} a_j + \sum_{ijkl} h_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$$
Spin Operators:
$$H = \sum_{i} c_i P_i$$

PROBLEM SETTING

Experiment (as a theoretician)



estimate energy of ρ : $E = \text{Tr}[H\rho]$ s.t. estimate \hat{E} fulfills $|\hat{E} - E| \leq \epsilon$

Measurement strategy

- two commuting operators can be measured simultaneously
- \rightarrow put them into one group σ
- grouped Hamiltonian decomposition:

$$H = \sum_{i=1}^{N} c_i P_i = \sum_{j=1}^{N_g} \sum_{k=1}^{N_j} c_{\sigma_j(k)} P_{\sigma_j(k)}$$

 $c_i \in \mathbb{R}, \ P_i \in \{X, Y, Z, \mathbb{1}\}^{\otimes n}$

s.t. every P_i belongs to at least one σ_i

- numerically cheap to group [2], i.e., to find the groups σ_j
- $\rightarrow N_g \ll N$ distinct measurement settings needed to estimate E

REFERENCES

- [1] Mnih, Volodymyr and Szepesvári, Csaba and Audibert, Jean-Yves: *Empirical Bernstein stopping*, Proc. 25th Int. Conf. Mach. Learning (2008).
- [2] Alexander Gresch and Martin Kliesch: Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping, arXiv (2023).
- [3] O'Malley, Peter JJ and Babbush, et. al.: Scalable quantum simulation of molecular energies, APS (2016).
- [4] Arrasmith, Cincio, Somma and Coles: Operator Sampling for shot-frugal Optimization in Variational Algorithms, arXiv (2020).

Empirical Bernstein Stopping algorithm (EBS)

- Goal: Estimate E with accuracy ϵ and confidence 1δ
- Idea: Use empirical Bernstein bound to adaptively terminate the estimation process

Algorithm EBGStop [1]

Require: Accuracy ϵ & inconfidence δ

Require: Range $R = 2 \sum_{i=1}^{N} |c_i|$

Require: iid samples E_t with mean E

$$c_0 \leftarrow \infty$$
$$t \leftarrow 1$$

while $\epsilon_t > \epsilon$ do

Sample Energy E_t

Update MEAN (E_t) & VAR (E_t)

Update $\epsilon_t(d_t)$ using Eq. (2)

 $t \leftarrow t + 1$

end while $\hat{E} \leftarrow \text{MEAN}(E_t)$

return \hat{E}

Ensure: $|\hat{E} - E| \le \epsilon$ with prob. $1 - \delta$

Hoeffding

$$|\hat{E} - E| \le R\sqrt{\frac{\ln(2/\delta)}{2t}} \tag{1}$$

Empirical Bernstein

$$|\hat{E} - E| \le \hat{\sigma}_t \sqrt{\frac{2\ln(3/\delta)}{t}} + \frac{3R\ln(3/\delta)}{t}$$
 (2)

Algorithm key ideas

- (1) $\mathbb{P}[\text{premature stopping}] \stackrel{!}{\leq} \delta$
- (2) partition into steps, s.t. $\sum_{t=1}^{\infty} d_t \leq \delta$
- (3) use tail bound at step t with prob. of premature stopping at most d_t
- (4) Batch-sampling: updating after $\lceil \beta^k \rceil > 1$ samples reduces variance of the estimator
- (5) Mid-interval sampling to reduce over-shooting

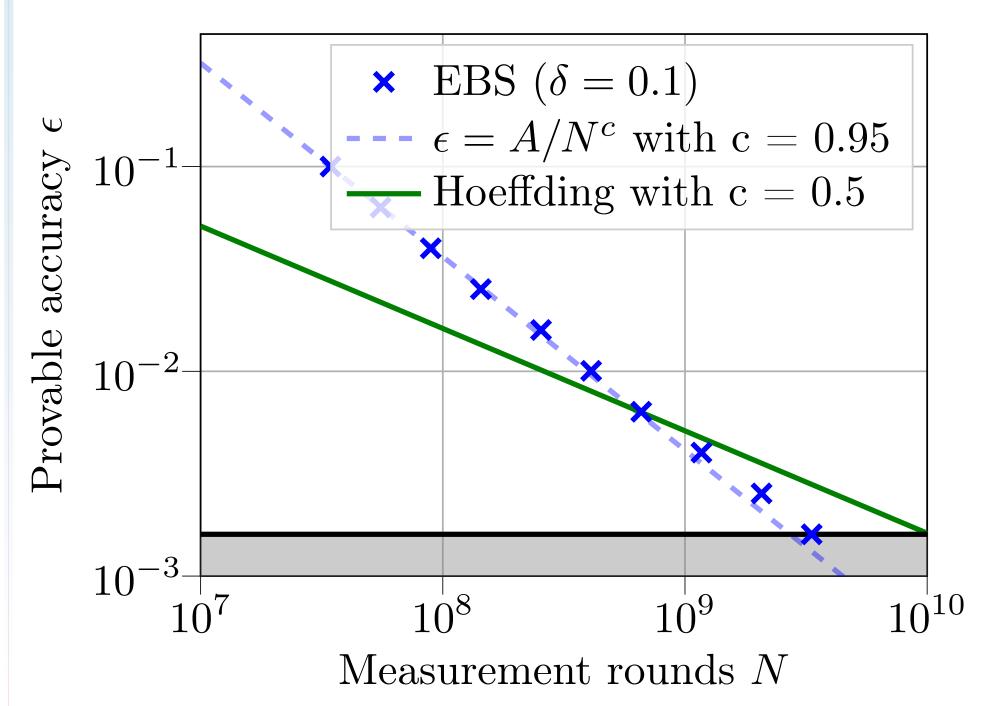
RESULTS

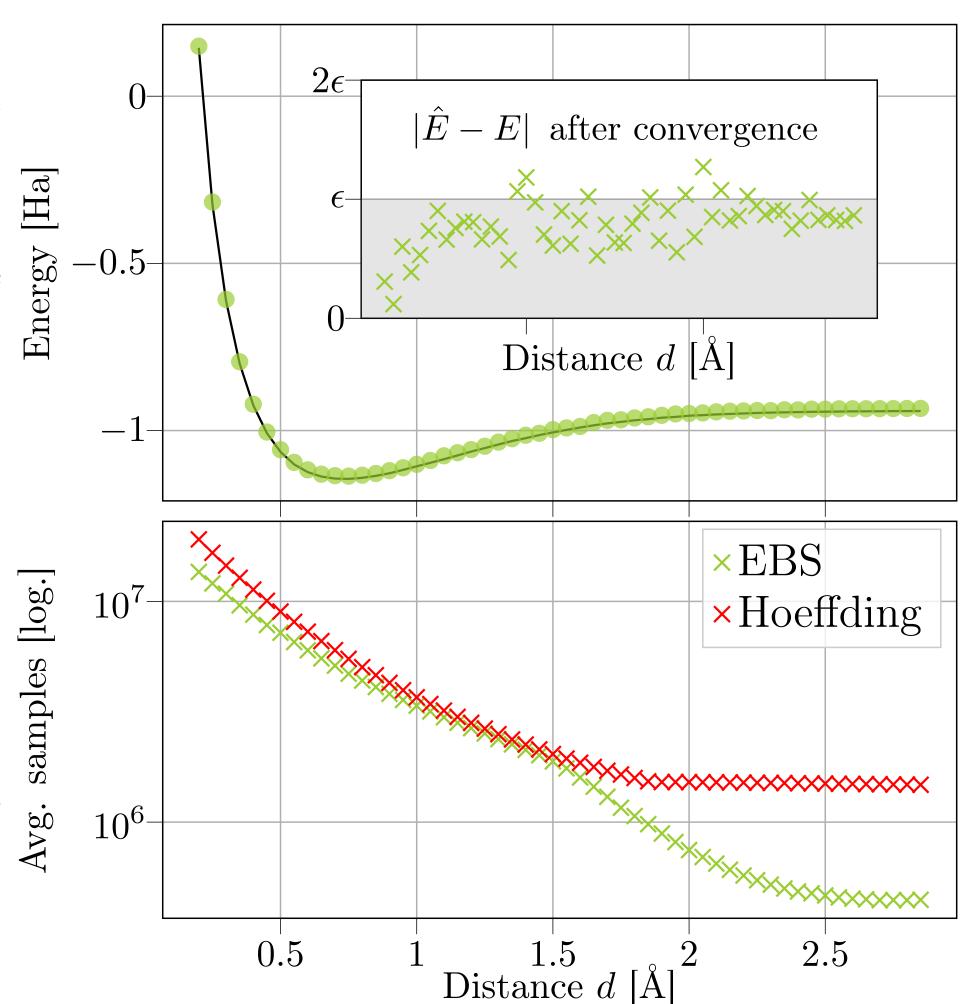
Variational quantum eigensolver (VQE)

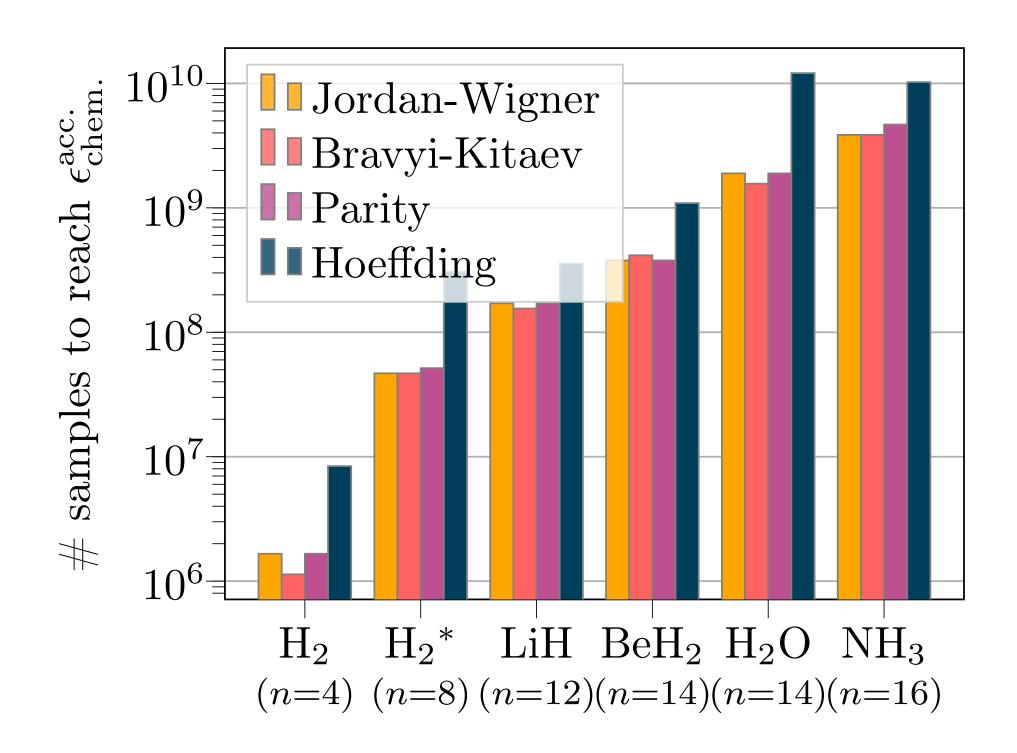
- VQE for H_2 molecule (2 qubits) at various bond lengths d
- Ham. H(d) and VQE ansatz based on [3]
- 3 distinct measurements needed to gain one energy sample
- Each E(d) estimated using EBS
- benchmark EBS on this estimator against the Hoeffding guarantee [4]
- \rightarrow performance improvement over most d

Sampling from molecular ground-states

- group *H* using ShadowGrouping [2]
- measure each group once to obtain a single sample E_t (using $N = \mathcal{O}(n^4)$ shots in total)
- repeat for various molecules and fermionto-qubit mappings
- \rightarrow consistently outperforms the basic Hoeffding guarantee for various system sizes n







OUTLOOK

- extension of the empirical Bernstein bound to random vectors
- \rightarrow much more efficient estimators available [2]
- hyperparameter optimization of EBS still possible: overshooting?
- application of EBS to other contexts, such as estimating the fidelity, purity, entanglement . . .

github.com/UgurTepe/
EmpiricalBernsteinAlgorithm